
David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

3.2 David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Anal-

ysis in Dynamic Languages

3.2.1 David Worth

While racing road bikes with the pros does take up plenty of his weekends, David still finds time to keep

up with his hobbies including computer security, homebrewed beer, mathematics, and occasional culinary

extravaganzas.

In his prior lives he has worked in research mathematics, high performance computing, network engi-

neering, healthcare management as a programmer, and even as a bicycle mechanic.

David has a MSc in Pure Mathematics from The University of New Mexico where he studied Geomet-

ric Measure Theory while researching applications of fractal geometry to image processing and automated

pathology problems.

twitter: @HighgrooveDave

3.2.2 Justin Collins

Justin has is an MSc graduate from the Seattle University and a PhD student at the University of California

where he still is .. possibly forever! He has been working at Klir Technologies, AT&T Interactive, and is now

at Twitter. He also did other stuff in between.

He enjoys writing programs, shooting arrows, and hanging out with his wife.

His first computer was a TRS-80 Model 100 his uncle gave him at 11. Model 100 BASIC was an

introduction to programming. When it was time to go to college, he just looked up what major included

"programming" and went for it. When it was time to graduate with a BS in CS, he decided he was not done

yet so he went off to get a graduate degree in CS.

twitter: @presidentbeef

3.2.3 Leveraging Convention over Configuration for Static Analysis in Dynamic Languages

Static analysis in dynamic languages is a well known difficult problem in computer science, with a great

deal of emphasis being put on type inference. The problem is so difficult that Holkner and Harlandís paper

on static analysis in Python opens immediately with, ìThe Python programming language is typical among

dynamic languages in that programs written in it are not susceptible to static analysis.î Dynamic languages

such as Ruby provide impressive programming power thanks to expressive language constructs and flexible

typing. Ruby, in particular, is strongly leveraged in the web development ecosystems thanks to well known

and supported frameworks such as Ruby on Rails and Sinatra. Web application security is a particularly dif-

ficult area for a number of reasons including, the low-barrier to entry for new developers combined with the

high-demand for their services, the increasing complexity of the web-based ecosystem, and the traditional

languages and frameworks for web-development not adopting a strong defensive stance as their default. Ruby

on Rails adopts the ìconvention over configurationî policy aimed at aiding developers of all levels in build-

ing robust web applications with a minimum of configuration. The goal is for the framework to simply ìdo

the right thingî by default, and more sophisticated features and technologies are to be explicitly applied by

develop- ers with those more advanced requirements and understanding. Much of the power in the Ruby on

Rails framework stems from careful use of ìmagicî functions: dynamically generated functions using Rubyís

powerful metaprogramming structures. As a side effect, many of the methods called by developers are not

available to a static analysis tool by simply examining the code on disk. We are able to leverage the consis-

tency of the language and framework to perform static analysis on Ruby on Rails applications, and reason

about their attack surface. This is done by analyzing the abstract syntax tree, and sometimes the configura-

tion (generally simply library versions) of the program itself and by comparing it to a pre-compiled library

of known security issues exposed by the Ruby on Rails framework.

• Talk and paper can be downloaded from http://grehack.org

27 / 61 GreHack

http://grehack.org


Leveraging Convention over Configuration for

Static Analysis in Dynamic Languages

David Worth∗, Justin Collins†

∗Highgroove Studios

112 Krog St, Suite 6 Atlanta, GA 30307

Email: dave@highgroove.com Twitter: @highgroovedave
†Twitter

Email: collins@twitter.com

Twitter: @presidentbeef

Abstract—Static analysis in dynamic languages is a well known
difficult problem in computer science, with a great deal of
emphasis being put on type inference [1]. The problem is so
difficult that Holkner and Harland’s paper on static analysis
in Python opens immediately with, “The Python programming
language is typical among dynamic languages in that programs
written in it are not susceptible to static analysis.” [2] Dynamic
languages such as Ruby provide impressive programming power
thanks to expressive language constructs and flexible typing.
Ruby, in particular, is strongly leveraged in the web development
ecosystems thanks to well known and supported frameworks such
as Ruby on Rails and Sinatra.

Web application security is a particularly difficult area for a
number of reasons including, the low-barrier to entry for new
developers combined with the high-demand for their services,
the increasing complexity of the web-based ecosystem, and the
traditional languages and frameworks for web-development not
adopting a strong defensive stance as their default. Ruby on Rails
adopts the “convention over configuration” policy aimed at aiding
developers of all levels in building robust web applications with
a minimum of configuration. The goal is for the framework to
simply “do the right thing” by default, and more sophisticated
features and technologies are to be explicitly applied by develop-
ers with those more advanced requirements and understanding.
Much of the power in the Ruby on Rails framework stems
from careful use of “magic” methods: dynamically generated
methods using Ruby’s powerful metaprogramming structures.
As a side effect, many of the methods called by developers are
not available to a static analysis tool by simply examining the
code on disk. We are able to leverage the consistency of the
language and framework to perform static analysis on Ruby on
Rails applications, and reason about their attack surface. This is
done by analyzing the abstract syntax tree, and sometimes the
configuration (generally simply library versions) of the program
itself and by comparing it to a pre-compiled library of known
security issues exposed by the Ruby on Rails framework.

I. INTRODUCTION

Ruby on Rails is a popular web framework which provides a

Model-View-Controller architecture along with many ancillary

tools to engineer complicated web applications with a mini-

mum of code as well as a minimum of exposed complexity.

The fundamental principal employed to reduce complexity is

“convention over configuration”, meaning that standardized

methods are used to achieve standard functionality. In many

ways this philosophy resembles that of the Python community

and its “There’s only one way to do it” philosophy. The

advantage to such a philosophy is that one can successfully

rely on the conventions to expose large families of security

vulnerabilities present in modern web applications. The Ruby

on Rails Security Guide [5] lists a comprehensive collection of

general web application security vulnerabilities, and a number

of Rails-specific vulnerabilities, and their mitigations as pro-

vided for by the framework. Justin Collins, the original author

of the Brakeman Scanner for Ruby on Rails applications,

exploited exactly this convention-based approach, and these

Rails-specific issues, in designing the scanner.

II. BRAKEMAN SCANNER ARCHITECTURE

At a high level Brakeman treats Ruby as an “acceptable

Lisp” and uses existing parsers to decompose the code into

“symbolic expressions” (s-expressions) [7]. Each s-expression

can then be interrogated for its type, for example, a method

definition, a collection of arguments, a Ruby block, a method

call, or a string interpolation. These basic building blocks

forming an abstract syntax tree are the fundamental objects

used by Brakeman, along with its knowledge of Rails conven-

tions, to analyze a given Rails application for potential security

vulnerabilities.

Moreover, some basic “taint flow analysis” can be per-

formed based on the conventions within Rails. The means

by which user-input enters the system is fairly consistent,

with three of the major sources being the cookie collection,

a parameters hash available in, and used as the main source

of input to, controller actions, and the request object which

wraps up the context of a given request to the application. Due

to the consistency of the sources, we may reason concisely

about the danger presented by relying upon input from those

sources directly in contexts which have any potential security

implications.

A. Static Analysis of Ruby

The fundamental idea behind Brakeman is that Rails is a

framework, or a domain-specific language (DSL), for web

development. As such, tokens within Ruby and Rails which

appear to be analogous to “keywords” of other languages are

actually method calls in Ruby. Rails is often attributed with

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

28 / 61 GreHack



“magic” functionality, which to an experienced Rails developer

is a side effect of a well thought-out, non-intrusive, DSL.

To convert a Ruby program, or Rails application, into s-

expressions for analysis we use the combination of Racc [12]

and RubyParser [13]. Racc is a parser generator, analogous

to Yacc [15], for converting grammars into parsers for the

grammar definition. RubyParser provides two grammars, one

each for the unique syntactical structures of Ruby 1.8 and 1.9.

RubyParser then relies on the parsers generated by Racc to

generate s-expressions upon which we can operate. The node-

types in the s-expressions produced by RubyParser are the

node types as defined by Ruby [16] in its virtual machine.

It is interesting to note that the Ruby Parser and any

given Ruby implementation may actually differ in their in-

terpretation or parsing of a given program, as could any

two interpreter or virtual machine implementations. The Ruby

ecosystem is fairly unique in that the definitive reference for

correctness of Ruby is Matz’s Ruby Implementation (MRI),

as the implementation moves very quickly and the definitive

RubySpec has not been fully translated from Japanese (though

the RubySpec project has attempted to correct this). An

advantage of RubyParser being implemented independently

from any given implementation is that it is not susceptible

to any implementation bugs of a given implementation; by the

same token, it may implement its own.

SexpProcessor [14] provides a very flexible, convention-

based s-expression processing framework. An s-expression

processor inherits from the SexpProcessor class and sim-

ply defines methods of the form process 〈 ruby node type〉
and rewrite 〈 ruby node type〉. A given instance of a

SexpProcessor will pass any node of a given type to its

rewriter or processor method if defined. The default method is

simply called process, and does not necessarily need to be

overridden, though it may be. It dispatches sub-expressions of

a given type to the appropriate rewriter or processor.

Brakeman extends SexpProcessor’s base class to capture

important, and potentially vulnerable, points of execution

context. It does this in two phases: a pre-processing collection

phase, during which potentially vulnerable s-expressions are

collected based on the type of vulnerability being checked

for, and an analysis phase during which the pre-stored s-

expressions are analyzed for actual vulnerabilities, and if one

is found, it is rated in its exploitability (confidence).

For example, in pre-processing templates, for Cross-Site

Scripting (XSS) it examines local variable assignments, and

any point where there is an output from a Ruby expression. It is

able to collect those expressions via a call to process output,

and store them for analysis. Later, in the analysis phase, we

retrieve the output points and check them for user-controlled

data. We store the vulnerable expressions in a “Match” struc-

ture which contains both the type of user-controlled data along

with the s-expression which represents the vulnerable code.

Finally, these matches can be analyzed individually for the

actual vulnerabilities, and classified appropriately in prepa-

ration for the reporting phase. This analysis phase requires

walking the vulnerable s-expressions and interrogating them

for use of particular variables, or copies of particular variables.

For example, the data structure which carries the context of a

given HTTP request in Rails is the params hash. If values

from this hash are output directly, and without validation, the

program is vulnerable to a cross-site scripting vulnerability,

which is recorded and reported. This is an example of the

power of convention within a web framework such as Rails. If

there were no convention, but rather programmer-defined nam-

ing schemes for request parameters, a great deal more work

would be required in terms of data-flow analysis and taint-

checking to determine if a program is susceptible to cross-site

scripting. By relying upon best practices and convention we

can more easily reason about the safety, or lack thereof, of

various expressions.

B. The General Case

Given a language with a well-defined grammar and a parser,

we can construct an abstract syntax tree (AST) for a program

written in that language. Examining that AST allows one to

reason about the behavior of the given program. The strength

of Brakeman comes less from the nature of Ruby and its

abstract syntax tree, or its representation as s-expressions, but

rather from leveraging Rails’ use of convention over config-

uration. One such convention, mentioned above, is that all

HTTP request parameters are exposed in a consistently named

variable, params, within any controller action handling the

request. In this case, there is nothing unique about Ruby or

Rails in our ability to reason about the contents of params,

but rather that such a standarized naming scheme reduces the

complexity of detecting vulnerable programs. It is possible

that a given developer will decide to create such complex

code that Brakeman, or another similar tool, will not be able

to successfully reason about security vulnerabilities with the

program or application. This is not the use-case Brakeman, or

most other static analysis tools, are designed for. It is a rare

case that an attacker has the source code to a given vulnerable

web application to run these tools against. Instead such tools

are generally aimed at the developers themselves in an attempt

to aid them in writing better and more secure applications.

It is worth considering other convention over configuration-

based web application frameworks written in other languages,

to see how Brakeman’s techniques might apply.

The Python language includes in its Standard Library the

necessary tools for parsing Python and interrogating its ab-

stract syntax tree via the “Python Language Services” [18]

tools. The Grok [17] project touts itself as a convention

over configuration web framework with much of the same

functionality as Rails, implemented in Python. With this pair

of powerful tools, similar static analysis to that performed

by Brakeman should be possible in Python and Grok. In

examining the constructs provided by Grok there are some

fundamental differences which make such analysis more dif-

ficult than in the Ruby and Rails case. For example, HTTP

request parameters are named by the developer rather than

by the framework; thus, detecting XSS, for example, does

require some variety of data-flow analysis and taint-checking

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

29 / 61 GreHack



of the underlying framework rather than the application code

alone. This is not a shortcoming of Grok as a web framework,

but rather a failing of its convention-based design. Such a

framework could be transformed to a more convention-based

design to enhance its ability to be automatically analyzed and

reasoned about.

In contrast, the Groovy [19] programming language is a

dynamic language built on the Java Virtual Machine, de-

signed with the explicit goals of implementing Ruby style

DSLs and using other dynamic language techniques with

the advantages of static types and compilation. The Grails

[20] web framework is a convention over configuration-based

web framework meant to very closely resemble the Rails

framework. Its resemblance to Rails is so strong in fact that

many of the language constructs appear to be copied directly

from Rails into Groovy with the most minimal syntax changes

possible. As such, HTTP request parameters are passed to

controller actions as params, and thus their use can be

reasoned about in a similar fashion as we do in Brakeman

for Rails applications. The CodeNarc [21] project provides

some static analysis tools for Groovy, though it is aimed at

best practices and other Groovy specific issues. It would be

an interesting exercise for the Groovy/Grails community to

port some of the functionality from Brakeman to CodeNarc in

an effort to enhance the security of Grails applications.

While the above comparisons focus on a single, fairly trivial

use of convention over configuration, specifically the use of a

single name for the HTTP parameters passed to a given con-

troller action, it is illustrative. If all system inputs are provided

in easily recognized and automatically constructed fashions,

then the onus of identification of potentially dangerous data

within an application is taken from the developer or their tools.

The focus of tools can then be placed on other functionality,

such as detecting dangerous uses of said data.

III. INSECURE USER INPUT

The standard adage of “never trust user(-controlled) input”

is easily proffered but one of the fundamental realities of

developing applications is that we must act upon their data

in some way. As such, it is key to limit the ways in which

we trust user-controlled data rather than simply attempting to

avoid the problem.

SQL Injection (SQLi), along with cross-site scripting and

cross-site request forgery (CSRF), represent the most well-

known, common, and language-independent web vulnerability

classes. Ruby on Rails, like any other web framework, can be

susceptible to such flaws, though it does provide a number of

mitigations and best practices to prevent them.

A. SQLi Detection

Many of the methods which automatically generate SQL

are not explicitly defined by either Ruby on Rails itself

or by the user, but rather are automatically generated at

runtime by Rails. The generation of these methods is

based on interrogation of the database which backs a given

model wherein each column in the database is mapped

to an attribute of the model via the Object Relational

Model (ORM). Thus for a given user model with two

database columns “name” and “email”, the User class

itself responds to a variety of methods, some explicitly

defined such as User.all, which returns all users in the

system, and dynamic methods based on its attributes such

as User.find_by_name, User.find_by_email,

User.find_by_name_and_email, and even

User.find_all_by_name_and_email. While using

these finders generates appropriate SQL automatically, and

the parameters themselves are correctly isolated, this is a

perfect example of Rails conventions that are so consistent

they can be trivially identified in a static analysis context.

A naive approach one might take is to identify these finders

is with a simple regular expression. Brakeman opts to use the

abstract syntax tree from a Ruby parser as it provides a deeper

view into the application, but the above would work quickly

for a given model. This consistent, convention-based, dynamic

method generation is easily and deterministically identified

allowing for further reasoning about the functionality of the

code.

Compounding slightly the complexity of isolating

SQLi is that the parameters to various finders may

very well contain user-controlled data, in this case

passed in via a parameters hash(-table). Thus a simple,

incorrect and explicitly recommended against [5], idiom

for dynamically finding a user by name would be

User.where(‘‘name = #{params[user_name]}’’).

During the process of analysis we are able to reason simply

about the potential safety of such an expression. The call

signature of the where method on an active record model

only has a few different permutations. In the case where

the first variable is a string it is to be interpreted as “raw”

SQL. By examining the s-expression of the first parameter

we can quickly determine if any (potentially user-controller)

variable is interpolated, and if so it is flagged as potentially

dangerous. In the case where the user cannot control the data

the flagged expression may not be exploitable but is still

an indication of an expression that should be refactored to

follow the best-practice of passing parameters to the ORM

outside of the query logic [6].

If a programmer attempts a “clever” independent re-

implementation of such dynamic finders as described above, it

is fundamentally more difficult to reason about the safety of a

given expression. This is because there are no well understood

and accepted conventions about call signatures and handling

as have been created during the development of the Ruby on

Rails framework. Those conventions alone allow us to reason

concretely about the safety of a given expression.

B. Cross-Site Scripting

Within a given Rails application there are two sources of

potential Cross-Site Scripting vulnerabilities: Rails itself and a

developer’s code. Brakeman is Rails-version aware, and adds

checks for vulnerabilities within the Rails framework as they

are made public. When such vulnerabilities are created with a

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

30 / 61 GreHack



CVE, as they generally are, the warnings produced reference

the given CVE and the minimum version to which a developer

must upgrade in order to no longer be vulnerable to the given

bug.

The second phase of detecting XSS, briefly outlined above,

involves parsing the HTML templates for the application and

examining them for outputs of user-controlled data. Each

templating language may have its own mechanism for denoting

outputs, but two of the most common, Erb and Haml, denote

output as following a single = token. By identifying all of the

points where output is produced from a Ruby expression, we

can focus on identifying potentially dangerous inputs. This is

the pre-processing phase discussed in general above. Each new

templating language introduced to the Rails ecosystem must

have a custom parser implemented to support such scanning

since their semantics may vary radically.

The bulk of the work in the analysis stage is per-

formed by the has_immediate_user_input? and

has_immediate_model? predicates, which are called on

all unescaped output nodes detected by the scanner. The first

of these predicates recursively walks the entire expressions

looking for access to the params, cookies, or request

hashes, as well as string interpolations and other potential

sources of user-controlled data. Upon finding them, a Match

structure is returned containing the type of dangerous access

and the vulnerable expression. The second predicate simply

looks for calls directly on a model class. For example, if

Model.find_by_dangerous_attribute is called di-

rectly with user-controlled input, then a user may circumvent

security mechanisms or cause the system to leak secure data.

This may cause an XSS vulnerability if the returned data can

be forced by the user to refer to a given model stored in

the database which they control. For example, if the user is

able to store dangerous Javascript in their profile in a social-

networking site, then with a carefully crafted URL they might

force another user to view their profile which executes that

Javascript. Brakeman assumes that all model parameters are

tainted by default and checks their use in outputs.

Note that in the case of Rails 3.x, output in views is

automatically escaped so the checks become relatively trivial

as the built-in escaping method is called automatically. With

that in mind, there have been XSS vulnerabilities within Rails

itself, and the new mitigations should not be viewed as a claim

that Rails is somehow immune to this classic vulnerability.

C. Insecure Redirect and Rendering

A common idiom for concluding a controller action in a

Ruby on Rails application is to set some sort of notification

to be displayed to the user, then a destination is specified.

The destination to which the user is redirected is specified by

an options hash, and must not be user-controlled. If the user

does control the parameters to the redirect call then they may

manipulate the host attribute, which can be used to send a

user, after completing the initial action, to a remote malicious

host [8]. The user will likely trust a given link to a trusted

site without realizing the host manipulation is occurring.

To increase the confidence of the victim, the attacker may

obfuscate the vulnerability by making the site to which they

redirect them look identical to the trusted site if they control

the destination. Identification of such manipulation at runtime

is simply done by identifying any variable parameters to the

redirect. In that case the redirect is flagged as vulnerable.

The Rails framework provides mitigations for such redirection

via the only_path option, which strips all protocol, host,

and port information from the emitted URL, leaving only

the resource path behind. This mitigation can be easily and

quickly be applied by a developer upon being alerted to the

vulnerability.

Similarly, allowing a user to control the view or template to

be rendered in a given action may result in an information leak

about the system by effectively bypassing any authorization

controls in place. Rendering within Rails is done via the

render [10] method, which expects to receive the name of

a partial as a string and an options hash. The path to the

rendered view template should never contain user-controlled

parameters to avoid this vulnerability. Validating that it does

not simply means checking for string interpolation in the first

parameter, and checking for its source. If the source is the

cookie collection, the parameters hash as created by Rails, or

the request object then the source is deemed to be tainted

and is flagged. Much like the taint-safety of Perl, once a

variable from one of those sources has been manipulated by

the developer it is deemed untainted and can no longer be

reasoned about.

IV. EXPLICIT ACCESS CONTROLS VIA EXPOSED APIS

AND DSLS

Much of the Rails architecture revolves around explicit

APIs, exposed to the user to perform various actions, along

with domain-specific languages. Domain-specific languages

(DSLs) are Ruby code which exploit the syntactic flexibility of

Ruby itself to resemble a unique language intended to express

programmatic needs of the developer.

A. Mass Assignment

After the well-publicized compromise of GitHub by Egor

Homakov [9], the subject of Mass Assignment vulnerabil-

ities within the Rails framework came, once again, to the

fore. This vulnerability had been well understood within the

community, and as such standardized mitigations had been

created and well documented. The mitigations themselves

were active mitigations requiring understanding of the do-

main models to implement. The goal was to make such

mitigations simple enough they could be implemented quite

quickly with fundamental understanding of the models and

the use of their attributes. With the Rails 3.2.6 release, mass-

assignment has been disabled in development in such a way

that an exception is thrown if mass-assignment restrictions are

violated at runtime as an aid to developers. The vulnerability

is triggered via the very convenient update_attributes

method which is provided to simultaneously update multiple

attributes on a model. This may optionally include so-called

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

31 / 61 GreHack



“nested-attributes”, those attributes belonging to domain mod-

els associated with the model being updated explicitly, via a

single method call. This update is done without regard to the

nature of those attributes, as Rails does not attempt to reason

about the use of any attribute. For example, a user may have

a boolean attribute to indicate the user is an administrator.

Other attributes may be explicitly exposed to the user through

a web-form such as “real name” and “home town”. In this case

the user themself might manipulate that web-form’s fields to

include an administrator attribute of their own, as if it were

provided by the developer, effectively making themselves an

administrator.

While current static analysis tools cannot prevent the above

scenario, as they cannot reason about the relative sensitivity

of various fields within the system, they can reveal those

models which lack explicit white- or black-listing of at-

tributes for update. Rails provides two mechanisms for at-

tribute access control: white-listing via attr_accessible,

and black-listing, the considerably less preferable route, via

attr_protected. The latter mechanism is often used in

“kitchen-sink” models which have so many attributes such

that explicitly white-listing those attributes which should be

writeable is tedious for the developer, so a black-listing of the

few sensitive attributes is provided. The attr_accessible

and attr_protected “keywords” are actually methods in

a sophisticated DSL. We can identify calls to these methods,

and from their existence, infer that the developers of a given

application have at least taken steps to limit access to model

attributes, and hopefully, reasoned about their relative sensi-

tivity. Though this is not a foolproof methodology, it does

indicate to a developer or external auditor those models which

have not explicitly made public declarations about the sensi-

tivity of their underlying attributes. Moreover, those models

which are of sufficient complexity to warrant a black-listing

via attr_protected may warrant a significant refactor

into smaller models, each of which can have explicit access

controls applied to them. In this case the mere existence of

the black-list indicates a “pain-point” ripe for a refactor to

improve the architecture and security of the application in one

pass.

V. EXTERNAL LIBRARY CONVENTIONS

Not only does the Rails framework itself encourage stan-

dardization in the methods by which various pieces of func-

tionality are achieved, but the entire ecosystem has evolved

with the same philosophy in mind. Some libraries and ex-

ecutable gems such as Bundler and Rake, have become so

pervasive as to be considered an integral part of developing a

modern Rails application.

A. Bundler

With the introduction of the Bundler gem the process

of creating, updating, and maintaining library dependencies

for Rails applications, a process which had previously been

notoriously difficult, has become trivial. Bundler interrogates

a Gemfile and determines which versions of a given gem

and each of its dependencies (recursively) are required. For

example, an application may require a gem by name, by name

and explicit version (useful for specifying a bug-fix level of a

gem upon which an application relies), or an optimistic version

which will never be less than the specified version, but may

choose minor versions up to the next major version of a gem.

These options allow the system to avoid API changes that may

be introduced into a well semantically-versioned gem while

staying abreast of bugfixes. The results of the dependency

resolution process are stored in a Gemfile.lock which can

be interrogated for specific vulnerabilities. This interrogation

process does rely on some sort of external library of vul-

nerabilities but does have some strong advantages. The Rails

framework itself is installed as a gem from the Gemfile. As

vulnerabilities are found within Rails itself, CVEs are created,

and new versions are released, the Brakeman scanner can be

updated to check that a given application is not vulnerable to

those bugs fixed in various patch releases. This is not formal

“static analysis” in the context of analyzing executable code

but does follow the same philosophy of simply relying on

developers and tools to act consistently and openly such that

the code produced may be checked for correctness with a

maximum of ease.

B. Extension of Rails by Domain-Specific Languages

As noted previously, much of Rails which appears at first

glance to be made of “keywords”, as a developer might be

experienced with from other languages, is actually a method

call within the current class (or one of its ancestors). Examples

of this are the private [11] “keyword” for marking methods

as inaccessible to call from outside of the current class or

module, and attr_accessible and attr_protected

for limiting access to a models attributes. Thus, writing

specific handlers to analyze the parameters to these apparent

keywords is no different than writing handlers for an other

method call. Moreover, this means that extending Brakeman to

support external gems which introduce DSL methods of their

own is of the same difficulty as implementing handlers for the

attribute control methods. For example, the MetaWhere gem

by Ernie Miller which exposes some attribute-level searching

of ActiveRecord models, provides the assoc_searchable

and assoc_unsearchable methods to white and blacklist

attribute in much the same fashion as Rails attribute access

methods.

VI. CONCLUSION

By leveraging conventions within modern languages and

frameworks, one can more easily write sophisticated static

analysis tools than one might in a laissez-faire language which

encourages each developer to implement fundamental opera-

tions on their own. Following the conventions, we are able to

reason strongly about a developer’s use of given methods and

constructs with a minimum of overhead, and often without

resorting to extremely low-level analysis. Ruby’s type-system,

while being intentionally flexible, lends itself to analysis of

its abstract syntax tree, and thus to determining when various

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

32 / 61 GreHack



pieces of data may be user-controlled and when not. Just as the

Rails framework continues to evolve, so does the Brakeman

scanner with constant improvements in identifying security

vulnerabilities in an extremely popular web framework.

ACKNOWLEDGMENTS

The authors would like to thank the entire Brakeman Scan-

ner team for their support in improving the scanner constantly.

Moreover, David Worth would like to thank the project’s

maintainer and original implementor Justin Collins for his

encouragement to contribute to and participate in the project

via contributions to, and papers such as this.

REFERENCES

[1] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks, “Static type inference
for ruby,” in Proceedings of the 2009 ACM symposium on Applied

Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 1859–
1866. [Online]. Available: http://doi.acm.org/10.1145/1529282.1529700
1

[2] A. Holkner and J. Harland, “Evaluating the dynamic behaviour of
python applications,” in Proceedings of the Thirty-Second Australasian

Conference on Computer Science - Volume 91, ser. ACSC ’09.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc.,
2009, pp. 19–28. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1862659.1862665 1

[3] Google Scholar results for “Static Type Inference for Ruby”
[4] Justin Collins. BrakemanScanner [Online]. Available: http:

//brakemanscanner.org (URL)
[5] Ruby on Rails Security Guide [Online]. http://guides.rubyonrails.com/

security.html (URL) 1, 3
[6] Ruby on Rails Security Guide [Online]. http://guides.rubyonrails.org/

security.html#sql-injection (URL) 3
[7] Magnus Holm. (2010, February 4). Sexp for Rubyists [Online]. http://

blog.rubybestpractices.com/posts/judofyr/sexp-for-rubyists.html (URL) 1
[8] OWASP Top 10 - Redirect [Online]. https://www.owasp.org/index.php/

Top 10 2010-A10 (URL) 4
[9] Egor Homakov (2012, March 4) wow how come I commit

in master? O o [Online]. https://github.com/rails/rails/commit/
b83965785db1eec019edf1fc272b1aa393e6dc57 (URL) 4

[10] Rails API Documentation - ActionView::Template#render

[Online]. http://apidock.com/rails/ActionView/Template/render (URL) 4
[11] Rails API Documentation - Module::private [Online]. http://

apidock.com/ruby/Module/private (URL) 5
[12] Aaron Patterson. Racc [Online]. Available: https://github.com/

tenderlove/racc (URL) 2
[13] SeattleRB (Ryan Davis). RubyParser [Online]. Available: https://github.

com/seattlerb/ruby parser (URL) 2
[14] SeattleRB (Ryan Davis). SexpProcessor [Online]. Available: https://

github.com/seattlerb/sexp processor (URL) 2
[15] Stephen C Johnson. Yacc [Online]. Available: http://dinosaur.

compilertools.net/yacc/index.html (URL) 2
[16] Ruby core team. Ruby source code [Online]. Available: https://github.

com/ruby/ruby/blob/trunk/node.c#L100-886 (URL) 2
[17] Grok core team. Grok [Online]. Available: http://grok.zope.org/ (URL)

2
[18] Python core team. Python Language Services [Online]. Available: http:

//docs.python.org/library/language.html (uRL) 2
[19] Groovy core team. Groovy [Online]. Available: http://groovy.codehaus.

org/ (URL) 3
[20] Grails core team. Grails [Online]. Available: http://grails.org/ (URL) 3
[21] CodeNarc core team. CodeNarc [Online]. Available: http://codenarc.

sourceforge.net/ (URL) 3

David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic

Languages GreHack 2012, Grenoble, France

33 / 61 GreHack


	David Worth, Justin Collins/ Leveraging Convention over Configuration for Static Analysis in Dynamic Languages
	David Worth
	Justin Collins
	Leveraging Convention over Configuration for Static Analysis in Dynamic Languages


